Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Maya HITES; Clément R. MASSONNAUD; Simon JAMARD; François Goehringer; François DANION; Jean REIGNIER; Nathalie DE CASTRO; Denis GAROT; Eva LARRANAGA LAPIQUE; Karine LACOMBE; Violaine TOLSMA; Emmanuel FAURE; Denis MALVY; Therese STAUB; Johan COURJON; France CAZENAVE-ROBLOT; Anne Ma DYRHOL RIISE; Paul LE TURNIER; Guillaume MARTIN BLONDEL; Claire ROGER; Karolina AKINOSOGLOU; Vincent LE MOING; Lionel PIROTH; Pierre SELLIER; Xavier LESCURE; Marius TROSEID; Philippe CLEVENBERGH; Olav DALGARD; Sébastien GALLIEN; Marie GOUSSEFF; Paul LOUBET; Fanny BOUNES - VARDON; Clotilde VISEE; LEILA BELKHIR; Elisabeth BOTELHO-NEVERS; André CABIE; Anastasia KOTANIDOU; Fanny LANTERNIER; Elisabeth ROUVEIX-NORDON; Susana SILVA; Guillaume THIERY; Pascal POIGNARD; Guislaine CARCELAIN; Alpha DIALLO; Noemie MERCIER; Vida TERZIC; Maude BOUSCAMBERT; Alexandre GAYMARD; Mary-Anne TRABAUD; Grégory DESTRAS; Laurence JOSSET; Drifa BELHADI; Nicolas BILLARD; Jeremie GUEDJ; Thi-Hong-Lien HAN; Sandrine COUFFIN-CADIERGUES; Aline DECHANET; Christelle DELMAS; Hélène ESPEROU; Claire FOUGEROU-LEURENT; Soizic LE MESTRE; Annabelle METOIS; Marion NORET; Isabelle BALLY; Sebastián DERGAN-DYLON; Sarah TUBIANA; Ouifiya KALIF; Nathalie BERGAUD; Benjamin LEVEAU; Joe EUSTACE; Richard GREIL; Edit HAJDU; Monika HALANOVA; José Artur PAIVA; Anna PIEKARSKA; Jesus RODRIGUEZ BANO; Kristian TONBY; Milan TROJANEK; Sotirios TSIODRAS; Serhat UNAL; Charles BURDET; Dominique COSTAGLIOLA; Yazdan YAZDANPANAH; Nathan PEIFFER-SMADJA; France MENTRE; Florence ADER.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.02.23.24302586

ABSTRACT

Background Tixagevimab and cilgavimab (AZD7442) are two monoclonal antibodies developed by AstraZeneca for the pre-exposure prophylaxis and treatment of patients infected by SARS-CoV-2. Its effectiveness and safety in patients hospitalized with COVID-19 was not known at the outset of this trial. Methods DisCoVeRy is a phase 3, adaptive, multicentre, randomized, controlled trial conducted in 63 sites in Europe. Participants were randomly assigned (1:1) to receive placebo or tixagevimab-cilgavimab in addition to standard of care. The primary outcome was the clinical status at day 15 measured by the WHO seven-point ordinal scale. Several clinical, virological, immunological and safety endpoints were also assessed. Findings Due to slow enrolment, recruitment was stopped on July 1st, 2022. The antigen positive modified intention-to-treat population (mITT) was composed of 173 participants randomized to tixagevimab-cilgavimab (n=91) or placebo (n=82), 91.9% (159/173) with supplementary oxygen, and 47.4% (82/173) previously vaccinated at inclusion. There was no significant difference in the distribution of the WHO ordinal scale at day 15 between the two groups (odds ratio (OR) 0.93, 95%CI [0.54-1.61]; p=0.81) nor in any clinical, virological or safety secondary endpoints. In the global mITT (n=226), neutralization antibody titers were significantly higher in the tixagevimab-cilgavimab group/patients compared to placebo at day 3 (Least-square mean differences (LSMD) 1.44, 95% Confidence interval (CI) [1.20-1.68]; p < 10-23) and day 8 (LSMD 0.91, 95%CI [0.64-1.18]; p < 10-8) and it was most important for patients infected with a pre-omicron variant, both at day 3 (LSMD 1.94, 95% CI [1.67-2.20], p < 10-25) and day 8 (LSMD 1.17, 95% CI [0.87-1.47], p < 10-9), with a significant interaction (p < 10-7 and p=0.01 at days 3 and 8, respectively). Interpretation There were no significant differences between tixagevimab-cilgavimab and placebo in clinical endpoints, however the trial lacked power compared to prespecified calculations. Tixagevimab-cilgavimab was well tolerated, with low rates of treatment related events.


Subject(s)
COVID-19
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.02.13.23285853

ABSTRACT

Background: To cope with the persistence of the Covid-19 epidemic and the decrease in antibody levels following vaccination, a third dose of vaccine has been recommended in the general population. However, several vaccine regimens had been used initially, and the heterologous ChadOx1-S/BNT162b2 regimen had shown better efficacy and immunogenicity than the homologous BNT162b2/BNT162b2 regimen. Aim : We wanted to determine if this benefit was retained after the third dose. Methods: We combined an observational study of SARS-COV-2 infections among vaccinated healthcare workers at the University-Hospital of Lyon, France, with an analysis of immunological parameters before and after the third mRNA vaccine dose. Results: Following the second vaccine dose, heterologous vaccination regimens were more protective against infection than homologous regimens, but this was no longer the case after the third dose. RBD-specific IgG levels and serum neutralization capacity against different SARS-CoV-2 variants were higher after the third dose than after the second dose in the homologous regimen group, but not in the heterologous group. Conclusion: The advantage conferred by heterologous vaccination is lost after the third dose in terms of both protection and immunogenicity. Immunological measurements one month after vaccination suggest that heterologous vaccination induces maximal immunity after the second dose, whereas the third dose is required to reach the same level in individuals with a homologous regimen.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
3.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.14.23284558

ABSTRACT

We aimed to evaluate the association between the humoral and cellular immune responses and symptomatic SARS-CoV-2 infection with Delta or Omicron BA.1 variants in fully vaccinated outpatients. Anti-RBD IgG levels and IFN-{gamma} release were evaluated at PCR-diagnosis of SARS-CoV-2 in 636 samples from negative and positive patients during Delta and Omicron BA.1 periods. Median levels of anti-RBD IgG in positive patients were significantly lower than in negative patients for both variants (p < 0.05). The risk of Delta infection was inversely correlated with anti-RBD IgG titres (aOR = 0.63, 95% CI [0.41; 0.95], p = 0.03) and it was lower in the hybrid immunity group compared to the homologous vaccination group (aOR = 0.22, 95% CI [0.05; 0.62], p = 0.01). In contrast, neither the vaccination scheme nor anti-RBD IgG titers were associated with the risk of BA.1 infection in multivariable analysis. IFN-{gamma} release post-SARS-CoV-2 peptide stimulation was not different between samples from patients infected (either with Delta or Omicron BA.1 variant) or not (p = 0.77). Our results show that high circulating levels of anti-RBD IgG and hybrid immunity were independently associated with a lower risk of symptomatic SARS-CoV-2 infection in outpatients with differences according to the infecting variant.


Subject(s)
COVID-19 , Hepatitis D
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.08.22273513

ABSTRACT

After monoclonal antibody sotrovimab implementation, Rockett et al have warned on March 9th about two resistant mutations in the spike at position 337 and 340 occurring within the first week in four immunocompromised patients infected by a Delta variant and resulting in viable infection up to 25 days. As sotrovimab is currently the only effective treatment against BA.1 lineage of Omicron variant, we investigated the presence of these mutations in our 22,908 Omicron sequences performed from December 2021 to March 2022. Among 25 Omicron sequences with S:337 and S:340 substitutions, 9 were reported in six patients who had available clinical data and a follow up. All were immunicompromised, and presented a rapid selection of these mutations after sotrovimab monotherapy infusion. With these findings, we underscore that although these mutations are rare, they have been exclusively reported in immunocompromised patients treated with sotrovimab. We urge to consider monoclonal antibody as monotherapy in immunocompromised patients as a risk for escape mutants selection.

5.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1502293.v1

ABSTRACT

Recombination is a crucial process in the evolution of many organisms. Although the evolutionary reasons behind its occurrence in RNA viruses are debated, this phenomenon has been associated with major epidemiological events such as virus host range expansion, antigenic shift or variation in virulence 1,2, and this process occurs frequently in positive strand RNA viruses such as coronaviruses. The SARS-CoV-2 pandemic has been associated with the repeated emergence of variants of concern presenting increased transmissibility, severity or immune escape 3. The recent extensive circulation of Delta worldwide and its subsequent replacement by viruses of the Omicron lineage 4 (BA.1 then BA.2), have created conditions for genetic exchanges between viruses with both genetic diversity and phenotypic specificities 5-7. Here we report the identification and in vitro and in vivo characterization of a Delta-Omicron recombinant in Europe. This recombinant exhibits immune escape properties similar to Omicron, while its behavior in mice expressing the human ACE2 receptor is more similar to Delta. This recombinant provides a unique and natural opportunity to better understand the genotype to phenotype links in SARS-CoV-2.

6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.24.22272871

ABSTRACT

In Dec 2021-Feb 2022, an intense and unprecedented co-circulation of SARS-CoV-2 variants with high genetic diversity raised the question of possible co-infections between variants and how to detect them. Using 11 mixes of Delta:Omicron isolates at different ratios, we evaluated the performance of 4 different sets of primers used for whole-genome sequencing and we developed an unbiased bioinformatics method which can detect all co-infections irrespective of the SARS-CoV-2 lineages involved. Applied on 21,387 samples collected between weeks 49-2021 and 08-2022 from random genomic surveillance in France, we detected 53 co-infections between different lineages. The prevalence of Delta and Omicron (BA.1) co-infections and Omicron lineages BA.1 and BA.2 co-infections were estimated at 0.18% and 0.26%, respectively. Among 6,242 hospitalized patients, the intensive care unit (ICU) admission rates were 1.64%, 4.81% and 15.38% in Omicron, Delta and Delta/Omicron patients, respectively. No BA.1/BA.2 co-infections were reported among ICU admitted patients. Although SARS-CoV-2 co-infections were rare in this study, their proper detection is crucial to evaluate their clinical impact and the risk of the emergence of potential recombinants.

7.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.02.22271694

ABSTRACT

We report evidence of Delta/Omicron SARS-CoV-2 co-infections during the fifth wave of COVID-19 pandemics in France for 7 immunocompetent and epidemiologically unrelated patients. These co-infections were detected by PCR assays targeting SARS-CoV-2 S-gene mutations K417N and L452R and confirmed by whole genome sequencing which allowed the proportion estimation of each subpopulation. For 2 patients, the analyses of longitudinal samples collected 7 to 11 days apart showed that Delta or Omicron can outcompete the other variant during dual infection.


Subject(s)
COVID-19
8.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.02.22269653

ABSTRACT

High viral load in upper respiratory tract specimens observed for Delta cases may contributed to its increased infectivity compared to the Alpha variant. Herein, we showed that the RT-PCR Ct values in Health Care Workers sampled within five days after symptom onset were significantly higher for Omicron cases than Delta cases (+2.84 Ct, p=0.008). This result comfort the studies showing that the increased transmissibility of Omicron is related to other mechanisms than higher virus excretion.

9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.05.21267301

ABSTRACT

Herein, we describe the characteristics of vaccine breakthrough infections (VBI) in fully vaccinated individuals according to five vaccine strategies during the Delta wave in France. Inclusion criterion was a positive test at least 2 weeks after a full vaccine schedule: homologous vaccination with Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273); heterologous vaccination with Astrazeneca and Pfizer-BioNTech (ChadOx1/BNT162b2); single-dose vaccines Johnson & Johnson (Ad26.COV2.S) or Astrazeneca (ChadOx1). A total of 1630 VBI from patients fully vaccinated between February and July were included in this study. SARS-CoV-2 sequencing performed for 1366 samples showed that the delta variant represented 94.1% (1286/1366). Delta-VBI were mainly symptomatic (mild symptoms) with no difference according to the vaccine strategy (p=0.362). The median RT-PCR Ct values at diagnosis were significantly different between symptomatic and asymptomatic cases only for BNT162b2 group (17.7 (15.07, 20.51) vs 19.00 (16.00, 23.00), p=0.004). Up to 50% of VBI was classified as early-VBI (infected less than one month after full immunization) for BNT162b2, mRNA-1273, ChadOx1, and J Ad26.COV2.S. People aged 14-49 yo were overrepresented in early VBI compared to non-early VBI for BNT162b2 and mRNA-1273 (73.92% vs 37.87% for BNT162b2 and 77.78% vs 46.67 % for mRNA-1273, p<0.05). Our data emphasize a high prevalence of Delta-VBI occurring only one month after full immunization in young patients that might be related to relaxation of barrier gestures.


Subject(s)
Breakthrough Pain , Protein S Deficiency
10.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-711429.v1

ABSTRACT

Introduction: End stage kidney disease (ESKD) and cancer have been identified as risk factors for severe and fatal cases of COVID-19, making vaccination in these patients a priority. Patients suffering from ESKD have a significantly weaker response to common vaccines than general population. However, humoral and cellular immune responses after two doses of RNA-based vaccine BNT162b2 (Pfizer–BioNTech) have been poorly explored in this vulnerable population.Case presentationA 69-year-old male patient was followed for ESKD and myeloma. He developed a severe SARS-CoV-2 pneumonia twenty days after two doses of BNT162b2 vaccine. Whole genome sequencing found that the virus belonged to the 20I/501Y.V1 clade. A serology draws eight days after the 2 nd vaccine dose showed positive RBD IgG without neutralizing activity. A serum specimen sampled thirty days after the onset of SARS-CoV-2 infection showed seroconversion against both RBD and N antigens. This specimen was shown to exhibit a frank neutralizing activity. The QuantiFERON® SARS-CoV-2 (Qiagen) showed a positive specific cellular response although the QuantiFERON monitor displayed a weak cellular response. ConclusionsImpaired immunity due to renal failure probably explain the severe pneumonia despite vaccination. The fact that the patient developpe a neutralizing activity and a cellular response after a third stimulation by infection may suggest to systemically administrate a third dose of vaccine in ESKD patients.


Subject(s)
Pneumonia , Renal Insufficiency , Neoplasms , Kidney Failure, Chronic , Vision Disorders , COVID-19 , Multiple Myeloma
11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.11.21256578

ABSTRACT

Background: SARS-CoV-2 mutations appeared recently and can lead to conformational changes in the spike protein and probably induce modifications in antigenicity. In this study, we wanted to assess the neutralizing capacity of antibodies to prevent cell infection, using a live virus neutralisation test. Methods: Sera samples were collected from different populations: two-dose vaccinated COVID-19-naive healthcare workers (HCWs; Pfizer-BioNTech BNT161b2), 6-months post mild COVID-19 HCWs, and critical COVID-19 patients. We tested various clades such as 19A (initial one), 20B (B.1.1.241 lineage), 20I/501Y.V1 (B.1.1.7 lineage), and 20H/501Y.V2 (B.1.351 lineage). Results: No significant difference was observed between the 20B and 19A isolates for HCWs with mild COVID-19 and critical patients. However, a significant decrease in neutralisation ability was found for 20I/501Y.V1 in comparison with 19A isolate for critical patients and HCWs 6-months post infection. Concerning 20H/501Y.V2, all populations had a significant reduction in neutralising antibody titres in comparison with the 19A isolate. Interestingly, a significant difference in neutralisation capacity was observed for vaccinated HCWs between the two variants whereas it was not significant for the convalescent groups. Conclusion: Neutralisation capacity was slightly reduced for critical patients and HCWs 6-months post infection. No neutralisation escape could be feared concerning the two variants of concern in both populations. The reduced neutralising response observed towards the 20H/501Y.V2 in comparison with the 19A and 20I/501Y.V1 isolates in fully immunized subjects with the BNT162b2 vaccine is a striking finding of the study.


Subject(s)
Agricultural Workers' Diseases , COVID-19
12.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.10.20228528

ABSTRACT

We report the implementation of a two-step strategy for the identification of SARS-CoV-2 variants carrying the spike deletion H69-V70 ({Delta}H69/{Delta}V70). This spike deletion resulted in a S-gene target failure (SGTF) of a three-target RT-PCR assay (TaqPath kit). Whole genome sequencing performed on 37 samples with SGTF revealed several receptor-binding domain mutations co-occurring with {Delta}H69/{Delta}V70. More importantly, this strategy enabled the first detection of the variant of concern 202012/01 in France on December 21th 2020. Since September a SARS-CoV-2 spike (S) deletion H69-V70 ({Delta}H69/{Delta}V70) has attracted increasing attention. This deletion was detected in the cluster-5 variant identified both in minks and humans in Denmark. This cluster-5 variant carries a receptor binding domain (RBD) mutation Y453F and was associated with reduced susceptibility to neutralizing antibodies to sera from recovered COVID-19 patients [1-3]. The {Delta}H69/{Delta}V70 has also co-occurred with two other RBD mutations of increasing interest [4]: N439K that is currently spreading in Europe and might also have reduced susceptibility to SARS-CoV-2 antibodies [5]; and N501Y that is part of the SARS-CoV-2 variant of concern (VOC) 202012/01 recently detected in England [6]. Although the impact of {Delta}H69/{Delta}V70 on SARS-CoV-2 pathogenesis is not clear, enhanced surveillance is urgently needed. Herein we report the implementation of a two-step strategy enabling a rapid detection of VOC 202012/01 or other variants carrying {Delta}H69/{Delta}V70.


Subject(s)
COVID-19
13.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-101080.v1

ABSTRACT

Quantifying the effectiveness of large-scale non-pharmaceutical interventions (NPIs) against COVID-19 is critical to adapting responses against future waves of the pandemic. Most studies of NPIs thus far have relied on epidemiological data. Here, we report the impact of NPIs on the evolution of SARS-CoV-2, taking the perspective of the virus. We examined how variations through time and space of SARS-CoV-2 genomic divergence rates, which reflect variations of the epidemic reproduction number Rt, can be explained by NPIs and combinations thereof. Based on the analysis of 5,198 SARS-CoV-2 genomes from 57 countries along with a detailed chronology of 9 non-pharmaceutical interventions during the early epidemic phase up to May 2020, we find that home containment (35% Rt reduction) and education lockdown (26%) had the strongest predicted effectiveness. To estimate the cumulative effect of NPIs, we modelled the probability of reducing Rt below 1, which is required to stop the epidemic, for various intervention combinations and initial Rt values. In these models, no intervention implemented alone was sufficient to stop the epidemic for Rt’s above 2 and all interventions combined were required for Rt’s above 3. Our approach can help inform decisions on the minimal set of NPIs required to control the epidemic depending on the current Rt value.


Subject(s)
COVID-19
14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.24.20180927

ABSTRACT

Quantifying the effectiveness of large-scale non-pharmaceutical interventions against COVID-19 is critical to adapting responses against future waves of the pandemic. By combining phylogenetic data of 5,198 SARS-CoV-2 genomes with the chronology of non-pharmaceutical interventions in 57 countries, we examine how interventions and combinations thereof alter the divergence rate of viral lineages, which is directly related to the epidemic reproduction number. Home containment and education lockdown had the largest independent impacts and were predicted to reduce the reproduction number by 35% and 26%, respectively. However, we find that in contexts with a reproduction number >2, no individual intervention is sufficient to stop the epidemic and increasingly stringent intervention combinations may be required. Our phylodynamic approach can complement epidemiological models to inform public health strategies against COVID-19.


Subject(s)
COVID-19
15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.07.241653

ABSTRACT

Through routine genomic surveillance of the novel SARS-CoV-2 virus (n=229 whole genome sequences), 2 different frameshifting deletions were newly detected in the open reading frame (ORF) 6, starting at the same position (27267). While the 26-nucleotide deletion variant was only found in one sample in March 2020, the 34-nucleotide deletion variant was found within a single geriatric hospital unit in 5/9 patients sequenced and one health care worker with samples collected between April 2nd and 9th, 2020. Both the presence of the 34-nucleotide deletion variant limited to this unit and the clustering of the corresponding whole genome sequences by phylogeny analysis strongly suggested a nosocomial transmission between patients. Interestingly, prolonged viral excretion of the 34-nucleotide deletion variant was identified in a stool sample 14 days after initial diagnosis for one patient. Clinical data revealed no significant difference in disease severity between patients harboring the wild-type or the 34-nucleotide deletion variants. The in vitro infection of the two deletion variants on primate endothelial kidney cells (BGM) and human lung adenocarcinoma cells (Calu-3) yielded comparable replication kinetics with the wild-type strain. Furthermore, high viral loads were found in vivo regardless of the presence or absence of the ORF6 deletion. Our study highlights the transmission and replication capacity of two newly described deletion variants in the same ORF6 region. ImportanceWhile the SARS-CoV-2 genome has remained relatively stable since its emergence in the human population, genomic deletions are an evolutionary pattern previously described for the related SARS-CoV. Real-time genomic monitoring of the circulating variants is paramount to detect strain prevalence and transmission dynamics. Given the role of ORF6 in interferon modulation, further characterization, such as mechanistic interactions and interferon monitoring in patients, is crucial in understanding the viral-host factors driving disease evolution.

16.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.14.201947

ABSTRACT

Since the beginning of the COVID-19 outbreak, SARS-CoV-2 whole-genome sequencing (WGS) has been performed at unprecedented rate worldwide with the use of very diverse Next Generation Sequencing (NGS) methods. Herein, we compare the performance of four NGS-based approaches for SARS-CoV-2 WGS. Twenty four clinical respiratory samples with a large scale of Ct values (from 10.7 to 33.9) were sequenced with four methods. Three used Illumina sequencing: an in-house metagenomic NGS (mNGS) protocol and two newly commercialized kits including a hybridization capture method developed by Illumina (DNA Prep with Enrichment kit and Respiratory Virus Oligo Panel, RVOP) and an amplicon sequencing method developed by Paragon Genomics (CleanPlex SARS-CoV-2 kit). We also evaluated the widely used amplicon sequencing protocol developed by ARTIC Network and combined with Oxford Nanopore Technologies (ONT) sequencing. All four methods yielded near-complete genomes (>99%) for high viral loads samples, with mNGS and RVOP producing the most complete genomes. For mid viral loads, 2/8 and 1/8 genomes were incomplete (<99%) with mNGS and both CleanPlex and RVOP, respectively. For low viral loads (Ct [≥]25), amplicon-based enrichment methods were the most sensitive techniques yielding complete genomes for 7/8 samples. All methods were highly concordant in terms of identity in complete consensus sequence. Just one mismatch in two samples was observed in CleanPlex vs the other methods, due to the dedicated bioinformatics pipeline setting a high threshold to call SNP compared to reference sequence. Importantly, all methods correctly identified a newly observed 34-nt deletion in ORF6 but required specific bioinformatic validation for RVOP. Finally, as a major warning for targeted techniques, a default of coverage in any given region of the genome should alert to a potential rearrangement or a SNP in primer annealing or probe-hybridizing regions and would require regular updates of the technique according to SARS-CoV-2 evolution.


Subject(s)
Genomic Instability , Severe Acute Respiratory Syndrome , COVID-19 , Respiratory Insufficiency
17.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.03.20119925

ABSTRACT

France was one of the first countries to be reached by the COVID-19 pandemic. Here, we analyse 196 SARS-Cov-2 genomes collected between Jan 24 and Mar 24 2020, and perform a phylodynamics analysis. In particular, we analyse the doubling time, reproduction number (Rt) and infection duration associated with the epidemic wave that was detected in incidence data starting from Feb 27. Different models suggest a slowing down of the epidemic in Mar, which would be consistent with the implementation of the national lock-down on Mar 17. The inferred distributions for the effective infection duration and Rt are in line with those estimated from contact tracing data. Finally, based on the available sequence data, we estimate that the French epidemic wave originated between mid-Jan and early Feb. Overall, this analysis shows the potential to use sequence genomic data to inform public health decisions in an epidemic crisis context and calls for further analyses with denser sampling.


Subject(s)
COVID-19
18.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.03.20072207

ABSTRACT

The sensitivity of SARS-CoV-2 RT-PCR tests developed by Charite (Germany), HKU (Hong-Kong), China CDC (China), US CDC (United-States), and Institut Pasteur, Paris (France) was assessed on SARS-CoV-2 cell culture supernatants and clinical samples. Although all RT-PCR assays performed well for SARS-CoV-2 detection, RdRp Institut Pasteur (IP2, IP4), N China CDC, and N1 US CDC were found to be the most sensitive.

19.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.19.998179

ABSTRACT

We present the first genetic characterization of a COVID-19 cluster in Europe using metagenomic next-generation sequencing (mNGS). Despite low viral loads, the mNGS workflow used herein allowed to characterize the whole genome sequences of SARS-CoV2 isolated from an asymptomatic patient, in 2 clinical samples collected 1 day apart. Comparison of these sequences suggests viral evolution with development of quasispecies. In addition, the present workflow identified a new deletion in nsp2 (Asp268Del) which was found in all 3 samples originating from this cluster as well as in 37 other viruses collected in England and in Netherlands, suggesting the spread of this deletion in Europe. The impact of Asp268Del on SARS-CoV-2 transmission and pathogenicity, as well as on PCR performances and anti-viral strategy should be rapidly evaluated in further studies.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL